13th European Conference on Turbomachinery Fluid dynamics & Thermodynamics
Paper ID:
ETC2019-440
Main Topic:
Fans
Authors
Abstract
New propulsive concepts such as Boundary Layer Ingestion involve stronger interactions between the engine and its environment, and thus more complex flows compared to classical architectures. Usual turbomachinery design tools are inadequate, and new numerical methodologies are needed to accurately predict the engine performance with affordable CPU resources. The present paper examines the relevance of a reduced-order modeling approach, the body force modeling (BFM) method, for a low-speed cooling fan with inflow distortion. The formulation itself accounts for the blade metal blockage, compressible effects and it relies on a physics-based loss model, independent of CFD calibration. The BFM results obtained in the present work are assessed against full-annulus URANS results and experiments. The comparison shows that the BFM approach successfully quantifies the fan stage performance. Furthermore, the distortion transfer across the stage is examined and the flow patterns observed are found to be the same as in the URANS results and in the measurements. Hence, this methodology, coming at a low CPU cost, is well-adapted to the early design phase of an innovative propulsion system.